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Abstract

Background: Posttraumatic Stress Disorder (PTSD) is a debilitating disorder and there is 

no current accurate prediction of who develops it after trauma. Neurobiologically, individuals 

with chronic PTSD exhibit aberrant resting-state functional connectivity (rsFC) between the 

hippocampus and other brain regions (e.g., amygdala, prefrontal cortex, posterior cingulate), 

and these aberrations correlate with severity of illness. Prior small-scale research (n < 25) has 

also shown that hippocampal-rsFC measured acutely after trauma is predictive of future severity 

using an ROI-based approach. While a promising biomarker, to-date no study has employed a 

data-driven approach to test whole-brain hippocampal-FC patterns in forecasting the development 

of PTSD symptoms.

Methods: Ninety-eight adults at risk of PTSD were recruited from the emergency department 

following traumatic injury and completed resting functional magnetic resonance imaging (rsfMRI; 

8min) within 1-month; 6-months later they completed the Clinician-Administered PTSD Scale 

(CAPS-5) for assessment of PTSD symptom severity. Whole-brain rsFC values with bilateral 

hippocampi were extracted (CONN) and used in a machine learning kernel ridge regression 

analysis (PRoNTo); both a k-folds (k=10) and 70/30 testing vs. training split approach were used 

for cross-validation (1,000 iterations to bootstrap confidence intervals for significance values).
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Results: Acute hippocampal-rsFC significantly predicted CAPS-5 scores at 6-months (r=0.30, 

p=0.006; MSE=120.58, p=0.006; R2=0.09, p=0.025). In post-hoc analyses, hippocampal-rsFC 

remained significant after controlling for demographics, PTSD symptoms at baseline, and 

depression, anxiety, and stress severity at 6-months (B=0.59, SE=0.20, p=0.003).

Conclusions: Findings suggest functional connectivity of the hippocampus across the brain 

acutely after traumatic injury is associated with prospective PTSD symptom severity.
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1. Introduction

Approximately 8–10% of American adults who experience a traumatic event will develop 

symptoms of post-traumatic stress disorder (PTSD), including hyperarousal, unwanted 

thoughts (e.g., flashbacks), and altered cognitive states(1). Among the most prevalent 

types of trauma is physical injury(2), with adults at heighted risk of developing symptoms 

(e.g., ~20% of survivors admitted to an emergency room meet criteria for PTSD diagnosis 

within one year).(3,4) While the overall understanding of PTSD etiology and its treatment 

continues to improve, implementation of therapeutic interventions early (e.g., in the weeks 

after trauma) yields the greatest benefits.(2,5,6) In order to provide early treatment, however, 

clinicians must be able to identify which individuals are at risk of developing PTSD.

Prior research demonstrates that pre-trauma risk factors such as sleep quality and presence 

of anxiety and depression increases the incidence of PTSD(7), while a number of pre- 

and peritraumatic factors, including those that are clinical (e.g., symptoms of distress) 

and biological (i.e., heart rate/blood pressure), can significantly add to the development of 

posttraumatic stress symptoms(8,9). The study of neural abnormalities qualified in the acute 

aftermath of trauma may also help identify those most at risk.(10–14) Much of this work 

has centered on the amygdala, involved in generation of negative affect.(10,15–18) However, 

the hippocampus, which is densely functionally and structurally connected to the amygdala, 

is responsible for the consolidation of fear memories(19) and is strongly implicated in 

PTSD.(20) Indeed, a fundamental feature of PTSD is atypical memory encoding and 

retrieval, particularly in the context of emotional memory(19,21–23), functions that are 

hippocampal-dependent(24). This is particularly true in the context of fear and extinction 

learning, whereby alterations in the hippocampus are often found in the context of 

trauma-related stimuli or general negative affect.(22,25) Notably, hippocampal aberrations 

frequently coincide with altered amygdala functioning.(22,25) Despite alterations in both 

regions(25), hippocampal functional discrepancies – but not always amygdala – are 

distinctly correlated with PTSD symptoms.(25) This suggests utility in explicitly studying 

hippocampal functioning as it relates to PTSD outcomes after trauma.

Prior theoretical models postulate altered stress hormone release via cortisol in individuals 

with PTSD has deleterious effects on the hippocampus, either by inducing cytotoxic 

effects(26) or impeding neuroplasticity.(27) Indeed, trauma-induced structural changes to 

the hippocampus may be associated with altered function.(28) Though prior research 
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shows instances of both hypo-(25,29) and hyper-engagement(30) of the hippocampus in 

response to negative and neutral stimuli as well trauma-specific reminders, these aberrations 

are associated with poor memory performance. Specifically, greater engagement of the 

hippocampus in response to negative words is associated with more false positives (e.g., 

misremembering novel stimuli).(30) Likewise, reduced activity in the hippocampus in 

response to trauma-specific stimuli is also associated with the presence of false alarms 

for trauma-related images.(25) Neurobiologically, this supports what has been demonstrated 

in behavioral studies of memory functioning for some time, namely that individuals with 

PTSD are less accurate compared to controls when recalling neutral(31), emotional(21), 

and episodic autobiographical information.(32) Such memory deficits have been posited 

to underlie the overgeneralization of fear as a cardinal symptom of PTSD(33), as the 

hippocampus contributes to both the extinction and/or regulation of fear in inappropriate 

contexts, by providing context-dependent processing.(22,34)

In addition, hippocampal aberrations in those with PTSD appear across various task-probes 

and in both affective(20) and cognitive domains(19), adding to its prevalence in this disorder. 

To this point, one of the most widely used techniques in studying the relationship between 

the hippocampus and PTSD is to quantify its functioning and associated connectivity during 

rest (e.g., when participants are not engaged in a task) and, indeed, individuals with chronic 

PTSD exhibit altered hippocampal functional connectivity at rest (hippocampal-rsFC). First, 

hippocampal-rsFC connectivity is altered with hubs of the default mode network (DMN), 

implicated in self-referential processing in the absence of task-demand. Specifically, those 

with PTSD show reduced connectivity of the hippocampus with the ventromedial prefrontal 

cortex (vmPFC)(35), medial prefrontal cortex(36), and PCC(37) compared to trauma 

exposed-controls. Other work has found evidence of greater integration of the hippocampus 

with the DMN(38) and greater integration of the hippocampus with regions of the salience 

network (SN), which is involved in the detection of salient stimuli.(39) This suggests 

that altered processing of learned fear (subserved by the hippocampus) may be related 

to differences in internally focused (e.g., DMN) and externally focused thought (e.g., SN)

(39) in those with PTSD. Second, although hippocampal-rsFC with nodes of the DMN 

is atypical in individuals with PTSD and generalized anxiety disorder (GAD) compared 

to healthy controls, this effect is driven by those with PTSD as the primary diagnosis.

(40) Finally, several studies demonstrate that hippocampal-rsFC correlates with individual 

variability of PTSD symptoms.(41,42) Decreased hippocampal-rsFC with the amygdala(43–

45), mPFC(35), and PCC(37,46), while hippocampal-rsFC with the vmPFC and dorsolateral 

prefrontal cortex (dlPFC)(47) are all significantly related to PTSD severity. Combined, this 

research demonstrates aberrant hippocampal-rsFC in those with PTSD compared to controls 

and that this characteristic distinguishes PTSD from other internalizing disorders(40) while 

meaningfully correlating with severity of the disorder.

Although cross-sectional associations with symptoms is informative, the hippocampus may 

also be a critical brain region important for disease onset and trajectory. A consistent, 

though not flawless(48–50) biomarker of the development of PTSD after trauma is smaller 

hippocampal volume pre-trauma.(12,17,51–53) An increasing body of work also suggests 

the hippocampus may undergo early changes in response to trauma (e.g., within days 

and up to one year following trauma exposure) that can be measured via hippocampal-
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rsFC and directly related to PTSD symptom progression.(46,54,55) Greater acute post-

trauma hippocampal-rsFC with the amygdala(54), PCC(55), and between hippocampal 

subfields(46) is a significant predictor of less PTSD symptoms up to four(46) and six 

months after trauma exposure.(54,55) Other work demonstrates greater acute post-trauma 

PFC connectivity with an “arousal network” – defined in part by the hippocampus – predicts 

less PTSD severity three months after trauma.(56) Importantly, PTSD is frequently co-

morbid with major depressive depression (MDD)(57), with multiple overlapping symptoms 

characterizing both disorders.(58) Yet, to our knowledge, the above studies did not test 

whether hippocampal connectivity measured acutely post-trauma forecasts future PTSD 

severity while accounting for co-morbid symptoms of depression.

The above work implies value of hippocampal-rsFC for the prediction of PTSD and that this 

relationship is not dependent on connectivity with a single brain region. Thus, in contrast 

to singular region approaches, machine-learning methods offer an opportunity to explore the 

most useful disorder-specific neural patterns across the entire brain without the constraints 

of traditional univariate schemes.(59) Multivariate variate pattern analysis (MVPA) offers 

such an innovative approach towards forecasting mental health outcomes. In recent years, 

MVPA has been applied to understanding the neural correlates of PTSD(15,60,61), 

MDD(62–64), and other disorders.(65) Briefly, this machine learning approach tests whether 

whole-brain distributed rsFC patterns are useful in predicting individual symptoms.(66) By 

analyzing neural spatially-distributed activation, MVPA can be used to “decode” the brain 

and identify information (i.e., future PTSD symptom severity) that is represented in voxels 

throughout the whole brain, with voxels representing either activation during task-based 

activities, or connectivity with another part of the brain (e.g., hippocampus).(66–69) Past 

MVPA approaches have used hippocampus whole-brain connectivity to discriminate when 

individuals with PTSD are engaged in trauma recall versus neutral imagery.(60) Other 

machine learning techniques have shown that mean volume reduction in the hippocampus 

contributes to accurate classification of those with PTSD from controls (accuracy: 69%, 

specificity: 81%).(70) Additionally, a machine learning classifier investigation found that 

amygdala-hippocampal structure via tract strength contributed to accurate prediction of 

trauma-exposed versus trauma-naive individuals.(71) Thus, patterns of hippocampal-based 

activation(60) and hippocampal structure(70) can significantly predict trauma history, PTSD 

symptoms, and unique features of the disorder. However, to our knowledge, MVPA has 

never been applied to examine the utility of hippocampal-rsFC to forecast individual PTSD 

symptom severity.

In this study, we employed MVPA to test whether acute (i.e., within one-month post-injury) 

hippocampal-rsFC patterns forecasted participants’ future (i.e., six-months post-injury) 

clinician-assessed PTSD symptom severity in a large, heterogenous sample of PTSD at-risk 

participants. We assessed PTSD symptoms using the Clinician-Administered PTSD Scale 

for DSM-5(CAPS-5), considered to be the “gold-standard” assessment of PTSD.(72,73) 

Previous MVPA work in PTSD(15,61) has employed less reliable measures (i.e., self-report 

measures) of PTSD, such as the PTSD Checklist. Based on findings from previous studies, 

we hypothesized that post-injury hippocampal-rsFC would significantly forecast individual 

PTSD total symptom severity at six-months post-injury and, importantly, that the prediction 
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would still be significant in a regression model adjusting for six-month general depression, 

anxiety, stress scores and baseline PTSD symptoms.

2. Material and Methods

2.1. Participants

Traumatically-injured adults were recruited from a Level 1 Trauma Center either directly 

from the Emergency Department (ED) or by phone following ED discharge. Participants 

were eligible if they: a) were between the ages of 18–60, b) were English speaking, c) 

met the Diagnostic and Statistical Manual-5th edition (DSM-5) Criterion A for a PTSD 

diagnosis, and d) exhibited a greater risk of developing PTSD based on a minimum score 

of 3 (out of 5) on the Predicting PTSD Questionnaire.(74) Participants were excluded 

if they: a) experienced a moderate or severe head injury as the result of their trauma 

based on a score of > 13 on the Glasgow Coma Scale(75,76), b) suffered a spinal cord 

injury with neurological deficit, c) were admitted to the ER as the result of intentional 

self-inflicted injury, d) exhibited severe vision or hearing impairments, e) had a history 

of psychotic or manic symptoms or were currently taking antipsychotic medications, f) a 

history of clear substance abuse, g) on police hold following their traumatic injury, or h) 

were MRI incompatible based on the following: presence of ferromagnetic material in the 

body, claustrophobia, inability to lie still for two hours, or either currently pregnant or trying 

to become pregnant. Exclusion criteria was assessed via self-report during the screening 

process and additionally via a review of medical records for the presence of diagnostic 

codes. All participants provided written consent and all study procedures were approved by 

the local Institutional Review Board. Participants were compensated for their time and all 

procedures complied with the Helsinki Declaration.

2.2. Procedure

Upon enrollment, participants completed an 8-minute rsfMRI scan within one month of their 

traumatic injury. At that visit (henceforth referred to as ‘baseline’) they also completed 

a number of demographic and clinical assessments, including the PTSD Checklist for 

DSM-5 (PCL-5).(77) The PCL-5 is a 20-item self-report measure of post-traumatic stress 

symptoms with good internal consistency (Cronbach’s alpha = 0.94), convergent validity 

(r > 0.75), and test-retest reliability (r = 0.92).(78) Six months later, participants returned 

for a follow-up visit, at which time they completed the Clinician-Administered PTSD Scale 

for DSM-5 (CAPS-5)(79) with a trained research staff member. The CAPS-5 is considered 

a “gold-standard” assessment of PTSD, exhibits high internal consistency (α = .88) and 

good test-retest reliability (ICC = .78).(80) An internal reliability check on the CAPS-5 was 

completed for this study across two separate raters for 20% of CAPS-5 completed at six 

months. Results demonstrated excellent agreement among raters (kappa = 0.83, p < 0.001) 

and excellent reliability between total symptom severity scores (ICC = 0.96 [95% CI: 0.93–

0.98]).

In addition to the CAPS-5, participants completed the Depression Anxiety and Stress Scales 

(DASS-21) at the six month visit for self-reported assessment of general depression, anxiety, 
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and stress severity(81). Each of the depression (α = .81), anxiety (α = .89), and stress (α = 

.78) scales of the DASS-21 have been found to have excellent internal consistency.(82)

2.2.1 Resting State fMRI Acquisition—During the rsfMRI scan participants viewed 

a white crosshair displayed on a black background and were instructed to keep their 

eyes open. Scanning was performed on a 3.0 Tesla short bore GE Signa Excite MRI 

system at the Medical College of Wisconsin. Functional T2*-weighted echoplanar images 

(EPI) were collected in a sagittal orientation with the following parameters: repetition 

time (TR)/echo time (TE)=2000/25ms; FOV=22.4mm; matrix=64×64; flip angle=77°; slice 

thickness=3.5mm; voxel size=3.5 × 3.5 × 3.5mm; # slices = 41; volumes = 192. A high-

resolution T1-weighted anatomical image was also acquired for co-registration with the 

following parameters: TR/TE=8.2/3.2ms; FOV=240mm; matrix=256×224; flip angle=12°; 

voxel size=0.9375 × 1.071 × 1mm, # slices = 150.

2.3. Data Analysis

2.3.1. Image Preprocessing—Individual functional images were analyzed using 

the CONN functional connectivity toolbox(83) and preprocessed according to standard 

procedures. Briefly, images underwent spatial realignment using the SPM12 realign and 
unwarp procedure(84) with all scans referenced to the first image and estimated motion 

parameters calculated across six variables representing three translation (displacement) 

parameters and three rotation parameters. Temporal misalignment was corrected using 

slice-time correction.(85) As small head movements can cause spurious noise and distance-

dependent changes in signal correlations(86,87), frame-wise displacement (FD) was 

computed to rule out confounding effects of motion. Volumes with FD > 0.2 mm (plus 

1-back and 2-forward neighboring volumes) were ‘scrubbed’ (e.g., removed from analysis). 

Participants were excluded if more than 25% of the frames were scrubbed. In addition, 

subjects with cumulative movement > 3 mm or 3 degrees of rotation were identified for 

removal from analysis. Structural segmentation and normalization were done to classify data 

into grey matter, white matter, and cerebrospinal fluid (CSF) through the estimation of the 

posterior tissue probability maps (TPMs) in SPM12.(88) Images were then normalized to 

the Montreal Neurological Institute (MNI) template and smoothed with a 4 mm3 Gaussian 

kernel.(89) To isolate rsfMRI signal, resulting data were bandpass filtered at 0.01– 0.09 Hz, 

while signal from cerebrospinal fluid, white matter, and motion realignment parameters were 

entered as regressors of no-interest to control for these effects during scanning.

2.3.2. Pattern Recognition Analysis—Two whole-brain hippocampal-rsFC maps 

were computed for each subject at the first-level using CONN, one representing connectivity 

with the right hippocampus and one with the left hippocampus. Each map’s voxels 

represented a Fisher-transformed bivariate correlation coefficient between the respective 

seeds’ (e.g., right and left hippocampi) BOLD timeseries and every other voxel’s BOLD 

timeseries. The right and left hippocampi were defined using the Anatomical Automatic 

Labeling (AAL)-defined mask from the SPM toolbox.(90,91)

Both maps were subsequently used as features in a multivariate kernel ridge regression 

(KRR) using the PRoNTo toolbox (http://www.mlnl.cs.ucl.ac.uk/pronto/).(92) KRR is a 
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machine learning technique and a form of linear ridge regression (sum of squares) with the 

addition of a kernel function. Ridge regression introduces bias in order to improve model 

fit and accuracy of forecasted predictions. Extending this approach, KRR adds a function 

based on the “kernel trick”, whereby a kernel is used to improve model fit by operating 

in feature space. KRR is often considered an improvement on regression-based models for 

prediction as it offers a more efficient way to transform the data without the need to compute 

coordinates in a higher dimensional space.(93)

Each hippocampal-rsFC map served as its own feature (features: n = 2) and was provided 

for each individual subject while feature selection was constrained to voxels inside the brain 

through the use of a standard binary mask(92). In the calculation of features, a linear kernel 

was used with a square matrix of dimensions N x N, where the kernel reflected a similarity 

measure between each participant, called the dot product. We did not use a second-level 

mask to constrain feature selection by a subset of voxels; instead, all voxels within the 

brain (representing connectivity with the respective hippocampal seed region) were used 

for model prediction. Model prediction using the KRR approach was then computed and 

generalizability estimated using two different approaches. First, to utilize the entire sample, 

we used a k-folds (k = 10) approach for cross-validation. The k-folds approach for cross-

validation has been used previously in machine learning investigations involving those 

with PTSD(94) and may be superior to the use of training versus test datasets for this 

purpose when sample sizes are considered small by machine learning standards. Importantly, 

cross-validation ensures that the model is generalizable and prevents overfitting. Identical to 

past studies(15), features (i.e., L and R hippocampal-rsFC maps) were first mean centered 

using the training data (9-folds; 90% of dataset). In addition to this approach, we also split 

our dataset into a training set (~70% of sample) and a testing set (~30%) and used a k-folds 

approach where k = 1 to train on the 70% sub-sample and subsequently test the model 

performance on the 30% sub-sample. In both approaches, the performance of the model 

was characterized using several metrics, including the (cross-validated) Pearson correlation 

coefficient (r), mean squared error (MSE) and the coefficient of determination (R2) between 

model-estimated CAPS-5 and the true CAPS-5 scores. Significance values for prediction 

scores were obtained using permutation testing across 1,000 iterations, a necessary step 

when dealing with large neuroimaging datasets that violate the assumption that data is 

independently and identically distributed. The choice for 1,000 permutations was based on 

current recommendations(95) and identical to prior machine learning MVPA publications 

using neuroimaging data.(15,61)

Results of the model were also viewed through the calculation of weights for each voxel 

as a colormap, whereby warmer colors reflected voxels that increased model prediction 

by a value of the features (e.g., hippocampal-rsFC) and cooler colors reflected voxels 

that decreased model prediction by a value of the features, assuming all other voxels are 

fixed. That is, each voxel’s contribution to the model performance was visualized. Post-hoc 

averaging of weight values by individual brain regions was also done during this step(96), 

although we did not constrain weight contribution to its average within brain regions for 

the calculation of the model. Here, post-hoc averaging of weight values was done only for 

illustrative purposes, similar to other published accounts(15,61,97), as all voxels contributed 

to model performance and it is inaccurate to single out the predictive utility of one region.
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(98) For averaging of weight values by brain region, we used the AAL atlas, resulting in the 

averaged weight values for N = 117 brain regions.

3. Results

3.1. Participants

A total of N = 139 participants was initially recruited for this study. Of this, 31 participants 

were excluded from analysis for the following reasons: a) lost to follow-up (n = 12), b) 

excess motion during rsfMRI defined as > 25% volumes lost in scrubbing and/or ≥ 3 mm 

movement in any one direction (n = 28), or c) alignment problems in reconstruction of 

imaging data (n = 1). This left a final sample of N = 98.

Participants completed their baseline appointment between 6–33 days after injury (M = 

18.57 days, SD = 5.51 days) and their follow-up appointment between 5–8 months after 

injury (M = 6.07 months, SD = 0.43 months). Mechanism of injury varied across the 

sample but consisted primarily of survivors of motor vehicle crashes (67%). The remaining 

injuries were classified as: assault (16%), crush injuries (<5%), pedestrian injuries (<5%), 

dog bites (<5%), falls (<5%), gunshot (<5%), domestic violence (<5%), sexual assault 

(<5%), and bicycle accident (<5%; exact percentage is not included to ensure participant 

confidentiality). Complete participant demographics are reported in Table 1.

3.2. PTSD Symptoms

At baseline, PTSD severity measured by the PCL-5 ranged from 0–73 (M = 25.76, SD 

= 17.41). At six months, PTSD severity as measured by the CAPS-5 ranged from 0–63 

(M = 11.98, SD = 11.53), indicating that six months after injury participants ranged from 

asymptomatic to severe PTSD symptomatology(99).

3.3. MVPA Results

Using the full-sample in cross-validation, model results demonstrated that baseline whole-

brain hippocampal-rsFC significantly predicted CAPS-5 scores at six months (r = 0.30, p 
= 0.006; mean squared error = 120.58, p = 0.006; R2 = 0.09, p = 0.025). Results were 

the same when using a training (n = 68) vs. testing (n = 30) set for model validation 

(r = 0.46, p = 0.002; mean squared error = 217.38, p = 0.003; R2 = 0.21, p = 0.007). 

As results of model fit did not change based on which cross-validation method was used, 

the remaining results reflect when the full sample (N = 98) was used in cross-validation. 

Together, this suggests that the model prediction was an accurate fit (based on significant 

MSE) and that actual CAPS-5 scores (i.e., the targets in our regression) were well correlated 

with our predicted values based on model fit (given a significant R2). Spatial distribution 

of color-coded model weights for each voxel are depicted in Figure 1. Similar to other 

published MVPA studies(15,61,97), KRR-derived weights constrained by brain region for 

the top 10% of regions that contributed to model prediction are reported in Table 2.

Predicted targets based on model fit were subsequently extracted for use in post-hoc 

analyses to examine this relationship further while controlling for select covariates(100). We 

controlled for covariates in this fashion given that the addition of covariates within the model 
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prediction is applied to the linear kernel, which is limited in removing the linear confound 

for each effect for each voxel without assessing the effect of the covariate on the pattern of 

voxels (e.g., at the multivariate level). Extraction of the predicted model values alternatively 

allowed us to examine the significance of the multivariate model fit controlling for univariate 

factors. Here, predicted targets were used in a hierarchical linear regression using SPSS 

(Version 26) to examine the strength of the relationship between predicted and actual 

targets controlling for gender (dichotomous variable; reference = 0 [male]), mean-centered 

age, mean-centered time since injury at baseline, mean-centered time since injury at six 

months, mean-centered PCL-5 scores at baseline, and mean-centered DASS-21 depression, 

anxiety, and stress ratings at six months entered into Step 2 of the model. In addition, for 

controlling for differences in demographics and timing in the administration of measures, 

this allowed for the control for the presence of PTSD stress symptoms at baseline (i.e., 

the time of rsfMRI data collection), and to test for specificity in the relationship between 

hippocampal-rsFC and PTSD symptoms. Assumptions of the linear model were met, such 

that residuals were homoscedastic and there were no issues of multicollinearity (VIF < 4.5).

Results demonstrated that the relationship between predicted (based on model fit) and actual 

CAPS-5 scores remained significant controlling for these factors (B = 0.59, SE = 0.20, p = 

0.003). Results of the post-hoc hierarchical linear regression are reported in Table 3; Figure 

2 depicts the partial regression relationship between actual CAPS-5 scores (y-axis) plotted 

against predicted CAPS-5 scores based on the MVPA algorithm (x-axis) controlling for 

covariates.

4. Discussion

To assess the utility of whole-brain hippocampal-rsFC to forecast future PTSD symptom 

severity, adult survivors of a traumatic injury completed a rsfMRI scan acutely post-

injury (within one month) and a structured clinical interview evaluating PTSD symptoms 

approximately six-months post-injury. Results demonstrated that hippocampus-rsFC across 

the whole brain was a significant predictor of future PTSD severity, even after controlling 

for gender, PTSD self-reported symptoms at baseline, and general depression, anxiety, and 

stress symptoms as they were reported at follow-up. That is, findings suggest that functional 

integration of the hippocampus across the brain acutely after traumatic injury is a promising 

biomarker for prospective PTSD severity, and that this relationship is specific to PTSD when 

compared to general depression, anxiety, and stress symptom development.

Results support the use of data-driven, MVPA approaches for the prediction of psychiatric 

illness(62–65), including PTSD symptom severity(15,61,101) or dichotomous PTSD 

diagnosis.(102) Further, the strength of the relationship we discovered between predicted 

and actual symptom severity based on the model performance (r = 0.30) was similar to 

previous MVPA approaches that have predicted PTSD outcomes using other seed regions 

(e.g., r’s range from 0.28(103) to 0.46(15)). Thus, akin to other studies investigating 

brain-based biomarkers using machine learning(15,61,101,102), hippocampal-rsFC has a 

moderate effect size in forecasting individual PTSD psychopathology.
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Importantly, our findings support the recommendation to explore hippocampal-rsFC across 

the entire brain, rather than narrowing the focus on a priori selection of its connectivity 

with a select number of brain regions or networks. Increasingly, studies demonstrate the 

value of studying patterns of voxel-to-voxel activation in those with PTSD. For instance, 

Cisler and colleagues found voxel-to-voxel patterns of activation during trauma memory 

recall was a better predictor of PTSD diagnosis than the traditional use of ROI-to-ROI 

differences in activation(60), while other research shows that whole-brain connectivity 

is a better predictor of PTSD in combat veterans than 32 non-imaging markers (e.g., 

behavior, clinical symptoms).(104) Similarly, Suo and colleagues recently demonstrated 

whole-brain connectivity across 268 ROIs within the brain was able to significantly 

“predict” cross-sectional PTSD symptom severity in survivors of an earthquake(101). In this 

latter study, connections between the occipital lobe and cerebellum as well as connections 

of limbic regions (including hippocampus) with the occipital lobe and cerebellum were the 

primary connections that successfully predicted PTSD severity.(101) Notably, connections 

between these brain regions, with exception of the traditional “limbic structures,” are 

rarely studied in the context of PTSD. Finally, model-fits determined by whole-brain 

resting-state average amplitude of low frequency fluctuations have been shown to be 

better predictors of PTSD symptom severity than constraining the feature-selection with 

a mask encompassing the bilateral PFC, amygdalae, and hippocampi.(61) Indeed, in addition 

to hippocampal connectivity with regions involved in fear generation (i.e., amygdala) 

as well intra-hippocampal connectivity (including with the parahippocampal gyrus), we 

also found that hippocampal-cerebellum rsFC contributed greatly to model fit based on 

our post-hoc review of the top 10% of regions that contributed to model performance. 

Structural abnormalities of the cerebellum, a region traditionally associated with motor 

coordination and movement-related learning(105), have recently been indicated as a risk 

factor for common cognitive and affective disorders across categorial diagnoses(106), and 

recent research highlights that cortico-cerebellum circuitry may be important for integration 

and coordination of affective functioning that is related to psychiatric illness.(107) Taken 

together, this suggests a need for revisiting the traditional view of PTSD as a disorder 

specific to fronto-limbic aberrations.(108)

The present findings have important treatment implications. First, our study assessed 

hippocampal-rsFC within weeks of trauma exposure as a predictor of severity of symptoms 

months later. This research demonstrates that early screening for risk for PTSD diagnosis 

may benefit by examining neurobiological features such as hippocampal-rsFC early in 

disease progression. Second, unlike other studies, we explored the prediction of PTSD 

symptoms controlling for general depression, anxiety, and stress severity. Thus, results 

suggest that although PTSD is comorbid with depression and anxiety disorders(109) and 

prior studies have questioned the utility of hippocampal volume as a unique biomarker 

of PTSD(49), PTSD may still be qualified by unique neurobiological features, such 

as altered whole-brain hippocampal-rsFC. Finally, given the use of a continuous PTSD 

measurement, findings demonstrate that the prediction of continuous PTSD severity that 

includes sub-threshold presentation remains crucial, as it also causes clinically significant 

impairments(110) and represents a significant subset of trauma-exposed adults.(111)
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The present study is not without limitations. First, despite the fact that this sample was 

comprised of individuals who experienced varied mechanisms of injury, the majority of 

our sample (67%) were admitted to the emergency department following motor vehicle 

crash. Thus, findings may not be generalizable to individuals who have developed PTSD 

resulting from other trauma types. In addition, the use of a Glasgow Coma Scale score 

of > 13 during screening means that some individuals may have had a mild traumatic 

brain injury (mTBI). Although this score suggests that the mTBI injury is minor(75,76), 

future research on the impact of mTBI on rsFC should be examined. Although our sample 

is moderately-large for neuroimaging studies and keeping with other machine learning 

investigations in PTSD using fMRI data (which used sample sizes ranging from N = 

40(112) to N = 186(113)), our sample is considered small (though still acceptable based 

on n = 80 cut-off to reduce error below 0.01) for machine learning approaches that utilize 

biomedical data.(114) As depression prognosis was a secondary interest in the present study, 

we relied on a self-reported measure of depression symptoms at six months through the 

DASS-21. Thus, it will be helpful to re-investigate these findings with the use of more 

robust measures of depression (e.g., CESD-R(115)). Finally, although significance of the 

model was retained after controlling for univariate confounds in post-hoc regression, we 

were unable to adequately account for multivariate confounding, or the effect of a confound 

on the pattern of voxels, which is a known limitation of the present analysis.

Despite these limitations, several important conclusions can be drawn from our findings. 

First, this is one of the only published studies to-date that has examined hippocampal-rsFC 

in the acute aftermath of traumatic injury as a prospective predictor of PTSD symptom 

development and using a large sample size (prior accounts have used samples of n < 

25(46,55) or reported preliminary data in conference proceedings(54)). In addition, this is 

the only study to our knowledge that employs a multivariate, machine-learning analytic 

approach to the question of hippocampal-rsFC and PTSD prediction. Results provide further 

rationale for not restricting the study of the biological underpinnings of PTSD to limbic 

structures. Given the multitudinous role of the hippocampus in both memory formation and 

fear regulation, in addition to the constellation of PTSD symptoms spanning domains of 

memory alterations and altered arousal, results support the conclusion that hippocampal 

distributed connectivity across the brain may be consequential for understanding PTSD 

prognosis in trauma survivors.
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Figure 1. 
Results of the KRR analysis depicting computed weight values in arbitrary units for 

each voxel across the entire brain. Warmer colors indicate that these regions positively 

contributed to model performance. In contrast, voxels with low weight values, represented 

by cooler colors, indicate weight values that negatively contributed to model performance 

(e.g., push it toward decreased prediction). Note: KRR, kernel ridge regression.
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Figure 2. 
Significant relationship between actual and predicted CAPS scores based on the MVPA 

algorithm controlling for all covariates (B = 0.59, SE = 0.20, p = 0.003).
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Table 1.

Sample Demographics (N = 98)

M (SD)

Age 33.52 (10.30)

Education (years) 14.92 (2.39)

PCL-5 at baseline 25.76 (17.41)

DASS-21: Depression at six months 7.38 (9.06)

DASS-21: Anxiety at six months 7.53 (8.07)

DASS-21: Stress at six months 10.70 (9.07)

CAPS-5 at six months 11.98 (11.53)

n (%)

Gender (Female) 53 (54%)

Ethnicity (Hispanic or Latino) 9 (9%)

Race

 Asian < 5 (< 5%)

 Black or African American 54 (55%)

 White 32 (33%)

 More than one race 5 (5%)

 Unknown or not reported 6 (6%)

Note. PCL-5, PTSD Checklist for DSM-5; DASS-21, Depression Anxiety Stress Scales; CAPS-5, Clinician-Administered PTSD Scale. Small 
sample sizes for select racial groups are reported as < 5% to avoid participant identification; thus, cumulative percentage surpasses 100% as 
reported here.
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Table 3.

Post-hoc Hierarchical Linear Regression

Actual CAPS-5 Scores at Six Months

Variable B SE β t p-value

Step 1

Intercept 12.03 1.108 10.862 < 0.001 ***

Target CAPS-5 based on model prediction 0.81 0.23 0.34 3.51 0.001 **

Step 2

Intercept 10.59 1.41 7.53 0.000

Target CAPS-5 based on model prediction 0.59 0.20 0.25 3.02 0.003 **

Gender 2.61 1.98 0.11 1.32 0.192

Age 0.05 0.10 0.05 0.55 0.586

Time since injury at baseline 2.35 5.56 0.04 0.42 0.674

Time since injury at six months −2.45 2.22 −0.09 −1.10 0.273

PCL-5 at baseline 0.08 0.06 0.12 1.26 0.212

DASS-Depression at six months 0.10 0.20 0.08 0.50 0.621

DASS-Anxiety at six months 0.69 0.23 0.48 2.97 0.004 **

DASS-Stress at six months −0.01 0.20 −0.01 −0.05 0.957

Note. CAPS-5=Clinician-Administered PTSD Scale; PCL-5=PTSD Checklist-Civilian Version; DASS=Depression Anxiety Stress Scales

***
p < 0.001

**
p < 0.01; N = 98.
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